skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Doan, Khoa D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Digital advertising is performed in multiple ways, for e.g., contextual, display-based and search-based advertising. Across these avenues, the primary goal of the advertiser is to maximize the return on investment. To realize this, the advertiser often aims to target the advertisements towards a targeted set of audience as this set has a high likelihood to respond positively towards the advertisements. One such form of tailored and personalized, targeted advertising is known as look-alike modeling, where the advertiser provides a set of seed users and expects the machine learning model to identify a new set of users such that the newly identified set is similar to the seed-set with respect to the online purchasing activity. Existing look-alike modeling techniques (i.e., similarity-based and regression-based) suffer from serious limitations due to the implicit constraints induced during modeling. In addition, the high-dimensional and sparse nature of the advertising data increases the complexity. To overcome these limitations, in this paper, we propose a novel Adversarial Factorization Autoencoder that can efficiently learn a binary mapping from sparse, high-dimensional data to a binary address space through the use of an adversarial training procedure. We demonstrate the effectiveness of our proposed approach on a dataset obtained from a real-world setting and also systematically compare the performance of our proposed approach with existing look-alike modeling baselines. 
    more » « less